Thursday, 30 July 2015

Neptune’s Moon of Triton



The planets of the outer Solar System are known for being strange, as are their many moons. This is especially true of Triton, Neptune’s largest moon. In addition to being the seventh-largest moon in the Solar System, it is also the only major moon that has a retrograde orbit – i.e. it revolves in the direction opposite to the planet’s rotation. This suggests that Triton did not form in orbit around Neptune, but is a cosmic visitor that passed by one day and decided to stay.
Global Color Mosaic of Triton, taken by the Voyager 2 spacecraft in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by the Voyager 2 spacecraft in 1989. Credit: NASA/JPL/USGS
And like most moons in the outer Solar System, Triton is believed to be composed of an icy surface and a rocky core. But unlike most Solar moons, Triton is one of the few that is known to be geologically active. This results in cryovolcanism, where geysers periodically break through the crust and turn the surface Triton into what is sure to be a psychedelic experience!
Discovery and Naming:
Triton was discovered by British astronomer William Lassell on October 10th, 1846, just 17 days after the discovery of Neptune by German astronomer Johann Gottfried Galle. After learning about the discovery, John Herschel – the son of famed English astronomer William Herschel, who discovered many of Saturn’s and Uranus’ moons – wrote to Lassell and recommended he observe Neptune to see if it had any moons as well.
Lassell did so and discovered Neptune’s largest moon eight days later. Thirty-four years later, French astronomer Camille Flammarion named the moon Triton – after the Greek sea god and son of Poseidon (the equivalent of the Roman god Neptune) – in his 1880 book Astronomie Populaire. It would be several decades before the name caught on however. Until the discovery of the second moon Nereid in 1949, Triton was commonly known simply as “the satellite of Neptune”.
New Horizons image of Neptune and its largest moon, Triton, taken by the LORRI instrument on June 23, 2010. Credit: NASA
New Horizons image of Neptune and its largest moon, Triton, taken by the LORRI instrument on June 23, 2010. Credit: NASA
Size, Mass and Orbit:
At 2.14 × 1022 kg, and with a diameter of approx. 2,700 kilometers (1,680 miles) km, Triton is the largest moon in the Neptunian system – comprising more than 99.5% of all the mass known to orbit the planet. In addition to being the seventh-largest moon in the Solar System, it is also more massive than all known moons in the Solar System smaller than itself combined.

With no axial tilt and an eccentricity of virtually zero, the moon orbits Neptune at a distance of 354,760 km (220,438 miles). At this distance, Triton is the farthest satellite of Neptune, and orbits the planet every 5.87685 Earth days. Unlike other moons of its size, Triton has a retrograde orbit around its host planet.
Most of the outer irregular moons of Jupiter and Saturn have retrograde orbits, as do some of Uranus’s outer moons. However, these moons are all much more distant from their primaries, and are rather small in comparison. Triton also has a synchronous orbit with Neptune, which means it keeps one face aimed towards the planet at all times.
As Neptune orbits the Sun, Triton’s polar regions take turns facing the Sun, resulting in seasonal changes as one pole, then the other, moves into the sunlight. Such changes were observed in April of 2010 by astronomers using the European Southern Observatory’s Very Large Telescope.

Another all-important aspect of Triton’s orbit is that it is decaying. Scientists estimate that in approximately 3.6 billion years, it will pass below Neptune’s Roche limit and will be torn apart.
Composition:
Triton has a radius, density (2.061 g/cm3), temperature and chemical composition similar to thatof Pluto. Because of this, and the fact that it circles Neptune in a retrograde orbit, astronomers believe that the moon originated in the Kuiper Belt and later became trapped by Neptune’s gravity.
Another theory has it that Triton was once a dwarf planet with a companion. In this scenario, Neptune captured Triton and flung its companion away when the giant gas moved further out into the solar system, billions of years ago.
Also like Pluto, 55% of Triton’s surface is covered with frozen nitrogen, with water ice comprising 15–35% and dry ice (aka. frozen carbon dioxide) forming the remaining 10–20%. Trace amounts of methane and carbon monoxide ice are believed to exist there as well, as are small amounts of ammonia (in the form of ammonia dihydrate in the lithosphere).

Triton’s density suggests that its interior is differentiated between a solid core made of rocky material and metals, a mantle composed of ice, and a crust. There is enough rock in Triton’s interior for radioactive decay to power convection in the mantle, which may even be sufficient to maintain a subterranean ocean. As with Jupiter’s moon of Europa, the proposed existence of this warm-water ocean could mean the presence of life beneath the icy crusts.
Atmosphere and Surface Features:
Triton has a considerably high albedo, reflecting 60–95% of the sunlight that reaches it. The surface is also quite young, which is an indication of the possible existence of an interior ocean and geological activity. The moon has a reddish tint, which is probably the result of the methane ice turning to carbon due to exposure to ultraviolet radiation.
Triton is considered to be one of the coldest places in the Solar System. The moon’s surface temperature is approx. -235°C while Pluto averages about -229°C. Scientists say that Pluto may drop as low as -240°C at the furthest point from the Sun in its orbit, but it also gets much warmer closer to the Sun, giving it a higher overall temperature average.
It is also one of the few moons in the Solar System that is geologically active, which means that its surface is relatively young due to resurfacing. This activity also results in cryovolcanism, where water ammonia and nitrogen gas burst forth from the surface instead of liquid rock. These nitrogen geysers can send plumes of liquid nitrogen 8 km above the surface of the moon.
Triton (lower left) compared to the Moon (upper left) and Earth (right), to scale. Credit: NASA/JPL/USGS
Triton (lower left) compared to the Moon (upper left) and Earth (right), to scale. Credit: NASA/JPL/USGS
Because of the geological activity constantly renewing the moon’s surface, there are very few impact craters on Triton. Like Pluto, Triton has an atmosphere that is thought to have resulted from the evaporation of ices from its surface. Like its surface ices, Triton’s tenuous atmosphere is made up of nitrogen with trace amounts of carbon monoxide and small amounts of methane near the surface.
This atmosphere consists of a troposphere rising to an altitude of 8km, where it then gives way to a thermosphere that reaches out to 950 km from the surface. The temperature of Triton’s upper atmosphere, at 95-100 K (ca.-175 °C/-283 °F) is higher than that at the surface, due to the influence of solar radiation and Neptune’s magnetosphere.
A haze permeates most of Triton’s troposphere, thought to be composed largely of hydrocarbons and nitriles created by the action of sunlight on methane. Triton’s atmosphere also has clouds of condensed nitrogen that lie between 1 and 3 km from the surface.
Observations taken from Earth and by the Voyager 2 spacecraft have shown that Triton experiences a warm summer season every few hundred years. This could be the result of a periodic change in the planet’s albedo (i.e. its gets darker and redder) which could be caused by either frost patterns or geological activity.
Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO
Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO
This change would allow more heat to be absorbed, followed by an increase in sublimation and atmospheric pressure. Data collected between 1987 and 1999 indicated that Triton was approaching one of these warm summers.
Voyager 2:
When NASA’s Voyager 2 made a flyby of Neptune in August of 1989, the mission controllers also decided to conduct a flyby of Triton – similar to Voyager 1‘s encounter with Saturn and Titan. When it made its flyby, most of the northern hemisphere was in darkness and unseen by Voyager.
Because of the speed of Voyager’s visit and the slow rotation of Triton, only one hemisphere was seen clearly at close distance. The rest of the surface was either in darkness or seen as blurry markings. Nevertheless, theVoyager 2 spacecraft managed to capture several images of the moon and spotted geysers of liquid nitrogen blasting out of two distinct features on the surface.
In August of 2014, in anticipation of New Horizons impending encounter with Pluto, NASA restored these photos and used them to create the first global color map of Triton. Produced by Paul Schenk, a scientist at the Lunar and Planetary Institute in Houston, the map was also used to make a movie (shown below) that recreated the historic Voyager 2 encounter in time for the 25th anniversary of the event.

Yes, Triton is indeed an unusual moon. Aside from its rather unique characteristics (retrograde motion, geological activity) the moon’s landscape is likely to be an amazing sight. For anyone standing on the surface, surrounded by colorful ices, plumes of nitrogen and ammonia, a nitrogen haze and Neptune’s big blue disc hanging on the sky, the experience would seem like something akin to a hallucination.
In the end, it is too bad that the Solar System will one day be saying good-bye to this moon. Because of the nature of its orbit, the moon will eventually fall into Neptune’s gravity well and break up. At which point, Neptune will have a huge ring like Saturn, until those particles crash into the planet as well.
That too would be something to behold. One can only hope that humanity will still be around in 3.6 billion years to witness it!
Source: Universe Today, written by Matt Williams

Sunday, 26 July 2015

See Pluto’s Icy Flow Plains and Mountains Revealed in Highest Resolution Flyover Mosaic and Movie

Highest resolution mosaic of ‘Tombaugh Regio’ shows the heart-shaped region on Pluto focusing on ice flows and plains of ‘Sputnik Planum’ at top and icy mountain ranges of ‘Hillary Montes’ and ‘Norgay Montes’ below.  This new mosaic combines the seven highest resolution images captured by NASA’s New Horizons LORRI imager during history making closest approach flyby on July 14, 2015.  Inset at right shows global view of Pluto with location of mosaic and huge heart-shaped region in context.  Annotated with place names.  Credit: NASA/JHUAPL/SWRI/ Marco Di Lorenzo/Ken Kremer/kenkremer.com
Highest resolution mosaic of ‘Tombaugh Regio’ shows the heart-shaped region on Pluto focusing on ice flows and plains of ‘Sputnik Planum’ at top and icy mountain ranges of ‘Hillary Montes’ and ‘Norgay Montes’ below. This new mosaic combines the seven highest resolution images captured by NASA’s New Horizons LORRI imager during history making closest approach flyby on July 14, 2015. Inset at right shows global view of Pluto with location of mosaic and huge heart-shaped region in context. Annotated with place names. Credit: NASA/JHUAPL/SWRI/ Marco Di Lorenzo/Ken Kremer/kenkremer.com
Unannotated version below
Until barely two weeks ago, Pluto tantalized humanity for eight decades with mysteries we could only imagine – seen as just a point of light or fuzzy blob in the world’s most powerful telescopes.
Now the last explored planetary system in our solar system is being revealed for the first time in history to human eyes, piece by piece, in the form of the highest resolution flyover mosaics and movies of the alien surface ever available, now and for decades to come.
And it’s all thanks to the brilliant efforts of the scientists and engineers leading NASA’s New Horizons mission – which culminated in the first ever close encounter with Pluto and its five moons by a spacecraft from Earth on July 14, 2015.
With the resoundingly successful close flyby completed and the piano shaped New Horizons probe now looking in the rear view mirror, the scientific booty is raining down on receivers back on Earth. However it will take about 16 months to send all the flyby science data back to Earth due to limited bandwidth.
The first series of seven breathtaking high resolution surface images focusing on Pluto’s bright heart-shaped region, informally named ‘Tombaugh Regio’, has been stitched together into our new and wider view mosaic, shown above and below.
Furthermore the New Horizons team has created a spectacular simulated flyover movie centered in the heart of Pluto’s huge ‘Heart’ at ‘Tombaugh Regio’, showing the stunning views including the incredibly recent ice flows and plains of ‘Sputnik Planum’ and monumental icy mountain ranges of ‘Norgay Montes’ and newly discovered ‘Hillary Montes.’
The mosaic and movie are compiled from the seven highest resolution images captured by NASA’s New Horizons LORRI imager during the history making closest approach flyby.
The LORRI images were taken from a distance of 48,000 miles (77,000 kilometers) from the surface of the planet about 1.5 hours prior to the closest approach at 7:49 a.m. EDT on July 14. The images easily resolve structures smaller than a mile across.
New Horizon’s unveiled Pluto as a surprising vibrant and geologically active “icy world of wonders” as it barreled past the Pluto-Charon double planet system on July 14 at over 31,000 mph (49,600 kph) and collected unprecedented high resolution imagery and spectral measurements of the utterly alien worlds.
This annotated image of the southern region of Sputnik Planum illustrates its complexity, including the polygonal shapes of Pluto’s icy plains, its two mountain ranges, and a region where it appears that ancient, heavily-cratered terrain has been invaded by much newer icy deposits. The large crater highlighted in the image is about 30 miles (50 kilometers) wide, approximately the size of the greater Washington, DC area.  Credits: NASA/JHUAPL/SwRI
This annotated image of the southern region of Sputnik Planum illustrates its complexity, including the polygonal shapes of Pluto’s icy plains, its two mountain ranges, and a region where it appears that ancient, heavily-cratered terrain has been invaded by much newer icy deposits. The large crater highlighted in the image is about 30 miles (50 kilometers) wide, approximately the size of the greater Washington, DC area. Credits: NASA/JHUAPL/SwRI
The newly-discovered mountain range has been informally named Hillary Montes (Hillary Mountains) for Sir Edmund Hillary, who first summited Mount Everest with Tenzing Norgay in 1953. They rise about one mile (1.6 kilometers) above the surrounding plains, similar to the height of the Appalachian Mountains in the United States.
They are located nearby and somewhat north of another mountain range discovered first and named Norgay Montes (Norgay Mountains).
“For many years, we referred to Pluto as the Everest of planetary exploration,” said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado.
“It’s fitting that the two climbers who first summited Earth’s highest mountain, Edmund Hillary and Tenzing Norgay, now have their names on this new Everest.”
Watch this flyover above Pluto’s icy plains at Sputnik Planum and Hillary Montes:

Video caption: This simulated flyover of two regions on Pluto, northwestern Sputnik Planum (Sputnik Plain) and Hillary Montes (Hillary Mountains), was created from New Horizons close-approach images. Sputnik Planum has been informally named for Earth’s first artificial satellite, launched in 1957. Hillary Montes have been informally named for Sir Edmund Hillary, one of the first two humans to reach the summit of Mount Everest in 1953. The images were acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as one-half mile (1 kilometer) across are visible. Credit: NASA/JHUAPL/SwRI
The LORRI images show “extensive evidence of exotic ices flowing across Pluto’s surface and revealing signs of recent geologic activity, something scientists hoped to find but didn’t expect.”
Sputnik Planum is a Texas-sized plain, which lies on the western, left half of Pluto’s bilobed and bright heart-shaped feature, known as Tombaugh Regio.
The new imagery and spectral evidence from the Ralph instrument appears to show the flow of nitrogen ices in geologically recent times across a vast region. They appear to flow similar to glaciers on Earth. There are also carbon monoxide and methane ices mixed in with the water ices.
“At Pluto’s temperatures of minus-390 degrees Fahrenheit, these ices can flow like a glacier,” said Bill McKinnon, deputy leader of the New Horizons Geology, Geophysics and Imaging team at Washington University in St. Louis.
“In the southernmost region of the heart, adjacent to the dark equatorial region, it appears that ancient, heavily-cratered terrain has been invaded by much newer icy deposits.”
“We see the flow of viscous ice that looks like glacial flow.”
Highest resolution mosaic of ‘Tombaugh Regio’ shows the heart-shaped region on Pluto focusing on ice flows and plains of ‘Sputnik Planum’ at top and icy mountain ranges of ‘Hillary Montes’ and ‘Norgay Montes’ below.  This new mosaic combines the seven highest resolution images captured by NASA’s New Horizons LORRI imager during history making closest approach flyby on July 14, 2015.  Inset at right shows global view of Pluto with location of mosaic and huge heart-shaped region in context.  Credit: NASA/JHUAPL/SWRI/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Highest resolution mosaic of ‘Tombaugh Regio’ shows the heart-shaped region on Pluto focusing on ice flows and plains of ‘Sputnik Planum’ at top and icy mountain ranges of ‘Hillary Montes’ and ‘Norgay Montes’ below. This new mosaic combines the seven highest resolution images captured by NASA’s New Horizons LORRI imager during history making closest approach flyby on July 14, 2015. Inset at right shows global view of Pluto with location of mosaic and huge heart-shaped region in context. Credit: NASA/JHUAPL/SWRI/Marco Di Lorenzo/Ken Kremer/kenkremer.com
As of today, July 26, New Horizons is 12 days past the Pluto flyby and already over 15 million kilometers beyond Pluto and continuing its journey into the Kuiper Belt, the third realm of worlds in our solar system.
New Horizons discovered that Pluto is the largest known body beyond Neptune – and thus reigns as the “King of the Kuiper Belt!”
The science team plans to target New Horizons to fly by another smaller Kuiper Belt Object (KBO) as soon as 2018.
Watch for Ken’s continuing coverage of the Pluto flyby. He was onsite reporting live on the flyby and media briefings for Universe Today from the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Ken Kremer
Four images from New Horizons’ Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to create this enhanced color global view of Pluto. (The lower right edge of Pluto in this view currently lacks high-resolution color coverage.) The images, taken when the spacecraft was 280,000 miles (450,000 kilometers) away, show features as small as 1.4 miles (2.2 kilometers), twice the resolution of the single-image view taken on July 13.  Credits: NASA/JHUAPL/SwRI Four images from New Horizons’ Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to create this enhanced color global view of Pluto. (The lower right edge of Pluto in this view currently lacks high-resolution color coverage.) The images, taken when the spacecraft was 280,000 miles (450,000 kilometers) away, show features as small as 1.4 miles (2.2 kilometers), twice the resolution of the single-image view taken on July 13. Credits: NASA/JHUAPL/SwRI

Thursday, 23 July 2015

The hunt for ET will boost Australian astronomy

The 64-metre Parkes Radio telescope will be instrumental in the search for extraterrestrial intelligence. CSIRO/David McClenaghan, CC BY
It’s already an exciting time for Australia in the field of astronomy and space science. But we’ve just received an astronomical boost with the announcement of CSIRO’s role with the Breakthrough Prize Foundation’s (BPF) US$100 million dollar search for extraterrestrial intelligence, called Breakthrough Listen.
CSIRO has signed a multi-million dollar agreement to use its 64 metre Parkes radio telescope in the quest to search for intelligent life elsewhere in the universe.
Breakthrough Listen will be allocated a quarter of the science time available on the Parkes telescope from October 2016 for a period five years, on a full cost recovery basis.
The Parkes observations will be part of a larger set of initiatives to search for life in the universe. The ET hunters will also use time on the Green Bank telescope in West Virginia, operated by the US National Radio Astronomy Observatory, and a telescope at the University of California’s Lick Observatory.

Why Parkes?

CSIRO has the only capability for radio astronomy in the southern hemisphere that can deliver the scientific goals for the new initiative. The Parkes Radio Telescope is essential for the scientific integrity of the Search for Extraterrestrial Intelligence (SETI).
It is ideally situated for a search such as this. The most interesting and richest parts of our own galaxy, the Milky Way, pass directly overhead. If we are going to detect intelligent life elsewhere, it is most likely going to be found in that part of the galaxy towards the centre of the Milky Way.
The Milky Way as seeing from the south hemisphere in the winter in a 180 degrees view. The bulge towards the center of our galaxy is directly above the head of the observer. Flickr/Luis Argerich, CC BY-NC
Click to enlarge
The Parkes Radio Telescope is also one of the world’s premier big dishes and has outstanding ability to detect weak signals that a search like this requires.
It has always been at the forefront of discovery, from receiving video footage of the first Moon walk on 20 July 1969 (which was dramatised in the movie The Dish), to tracking NASA’s Curiosity rover during its descent onto Mars in 2012, to now once again searching for intelligent life.
It has also played a leading role in the detection and study of pulsars, small dense stars that can spin hundreds of times a second, the recent discovery of enigmatic (but boringly named) fast radio bursts, or FRBs, and in the search for gravitational waves.
Parkes also played a leading role in previous SETI searches. In 1995 the California-based SETI Institute used the telescope for six months for its Project Phoenix search. The Parkes telescope provided the critical capability to search the southern sky that could not be accessed using telescopes in the northern hemisphere.
The latest initiative is being led by a number of the world’s most eminent astrophysicists and astronomers. Professor Matthew Bailes, ARC Laureate Fellow at the Centre for Astrophysics and Supercomputing at Swinburne University of Technology in Melbourne, will be the Australian lead of the SETI observing team using the Parkes telescope.

Knock-on benefits

The program will nicely complement the existing scientific uses of the Parkes telescope. Although it will take up a quarter of Parkes time, it will benefit the research undertaken during the other three-quarters of the time the telescope is in operation.
It will enable even greater scientific capability to be provided to a wide range of astronomy research through both the financial support and through the provision of new data processing and analysis systems and techniques.
Incredible advances in computing technology make it possible for this new search to scan much greater swaths of the radio spectrum than has ever before been explored. Rather than trying to guess where on the radio dial astronomers might receive a signal, they can now search an entire region of the radio spectrum in a single observation.
The dramatic increase in data processing capability has also meant that astronomers can analyse telescope data in new ways, searching for many different types of artificial signals.
CSIRO is thrilled to be part of this global initiative which takes advantage of the significant advances that have been made in computation and signal processing since the search for extraterrestrial life began.
The probability of detecting intelligent life is small but it is much greater today than ever before. To be the first to discover intelligent life would be a phenomenal achievement not only for the scientific community but for all humankind.

Friday, 10 July 2015

Scientists Captivated By Pluto’s Emerging Geological Wonders

Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed "the whale" that straddles Pluto's equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit:  NASA-JHUAPL-SWRI
Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed “the whale” that straddles Pluto’s equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit: NASA-JHUAPL-SWRI
Bit by the Pluto bug? Day by day, new images appear showing an ever clearer view of a world we inexplicably love. Call it a dwarf planet. Call it a planet. It’s the unknown, and we can’t help but be drawn there.
Pluto made history when it was discovered in 1930. In 2015, it’s doing it all over again. Check out the new geology peeping into view.I’m reminded of the early explorers who shoved off in wooden ships in search of land across the water. After a long and often perilous journey, the mists would finally clear and the dark outline of land take form in the distance. It’s been 9 1/2 years since our collective Pluto voyage began. Yeah, we’re almost there.
Science team members react to the latest image of Pluto at the Johns Hopkins University Applied Physics Lab on July 10, 2015. Left to right: Cathy Olkin, Jason Cook, Alan Stern, Will Grundy, Casey Lisse, and Carly Howett. Credit: Michael Soluri
Science team members react to the latest image of Pluto at the Johns Hopkins University Applied Physics Lab on July 10, 2015. Left to right: Cathy Olkin, Jason Cook, Alan Stern, Will Grundy, Casey Lisse, and Carly Howett.
Credit: Michael Soluri
Today’s image release clearly shows a world growing more geologically diverse by the day.
“We’re close enough now that we’re just starting to see Pluto’s geology,” said New Horizons program scientist Curt Niebur, on NASA’s website. Niebur, who’s keenly interested in the gray area just above the whale’s “tail” feature, called it a “unique transition region with a lot of dynamic processes interacting, which makes it of particular scientific interest.”
The non-annotated version of the top photo. The 'whale' lies near the dwarf planet's equator. Pluto's axis is tilted 123° to its orbital plane. Credit: NASA
The non-annotated version of the top photo. The ‘whale’ lies near the dwarf planet’s equator. Pluto’s axis is tilted 123° to its orbital plane. Credit: NASA-JHUAPL-SWRI
Not only that, but the new photo shows an approximately 1,000-mile-long band of swirly terrain crossing the planet from east to northeast, a large, polygonal (roughly hexagonal) feature and new textures within the ‘whale’.
Neptune's largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA
Neptune’s largest moon Triton photographed on August 25, 1989 by Voyager 2. Triton has a surface of mostly frozen nitrogen, a water ice-rich crust, an icy mantle and rock-metal core. Credit: NASA
Even to a layperson’s eye, Pluto’s terrain  appears very different from that of Ceres or Vesta. In trying to make sense of what we see, Neptune’s moon Triton may be our best Plutonian analog with its frosts, weird cantaloupe terrain and an assortment of dark patches, some produced by icy volcanism.
New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015. Credits: NASA-JHUAPL-SWRI
New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015.
Credits: NASA-JHUAPL-SWRI
Other recent photos include this pretty view of Charon and Triton snapped late on July 8. NASA describes them eloquently as “two icy worlds, spinning around their common center of gravity like a pair of figure skaters clasping hands.” Charon and all of Pluto’s known moons formed from debris released when another planet struck Pluto long ago. New Horizons principal investigator Alan Stern attributes its bland color to its composition — mostly water ice. Pluto in contrast has a mantle of water ice, but it’s coated with methane, nitrogen and carbon dioxide ices and possibly organic compounds, too.
Color photos of Pluto and Charon side by side. The arcs along Pluto's right limb are artifacts but not the white border along the bottom. Could it be frost? Credit:
Color photos of Pluto and Charon side by side. The arcs along Pluto’s right limb are artifacts but not the white border along the bottom. Could it be frost? Credit: NASA-JHUAPL-SWRI
Hold on tight – there’s LOTS more to come!

Tuesday, 7 July 2015

Who Was Nicolaus Copernicus?

Astronomer Copernicus, or Conversations with God, by Matejko. Credit: frombork.art.pl/pl/
Astronomer Copernicus, or Conversations with God, by Matejko. Credit: frombork.art.pl
When it comes to understanding our place in the universe, few scientists have had more of an impact than Nicolaus Copernicus. The creator of the Copernican Model of the universe (aka. heliocentrism), his discovery that the Earth and other planets revolved the Sun triggered an intellectual revolution that would have far-reaching consequences.
In addition to playing a major part in the Scientific Revolution of the 17th and 18th centuries, his ideas changed the way people looked at the heavens, the planets, and would have a profound influence over men like Johannes Kepler, Galileo Galilei, Sir Isaac Newton and many others. In short, the “Copernican Revolution” helped to usher in the era of modern science.
Early Life:
Copernicus was born on February 19th, 1473 in the city of Torun (Thorn) in the Crown of the Kingdom of Poland. The youngest of four children to a well-to-do merchant family, Copernicus and his siblings were raised in the Catholic faith and had many strong ties to the Church.
His older brother Andreas would go on to become an Augustinian canon, while his sister, Barbara, became a Benedictine nun and (in her final years) the prioress of a convent. Only his sister Katharina ever married and had children, which Copernicus looked after until the day he died. Copernicus himself never married or had any children of his own.
Nicolaus Copernicus portrait from Town Hall in Torun (Thorn), 1580. Credit: frombork.art.pl
Nicolaus Copernicus portrait from Town Hall in Torun (Thorn), 1580. Credit: frombork.art.pl
Born in a predominately Germanic city and province, Copernicus acquired fluency in both German and Polish at a young age, and would go on to learn Greek and Italian during the course of his education. Given that it was the language of academia in his time, as well as the Catholic Church and the Polish royal court, Copernicus also became fluent in Latin, which the majority of his surviving works are written in.
Education:
In 1483, Copernicus’ father (whom he was named after) died, whereupon his maternal uncle, Lucas Watzenrode the Younger, began to oversee his education and career. Given the connections he maintained with Poland’s leading intellectual figures, Watzenrode would ensure that Copernicus had  great deal of exposure to some of the intellectual figures of his time.
Although little information on his early childhood is available, Copernicus’ biographers believe that his uncle sent him to St. John’ School in Torun, where he himself had been a master. Later, it is believed that he attended the Cathedral School at Wloclawek (located 60 km south-east Torun on the Vistula River), which prepared pupils for entrance to the University of Krakow – Watzenrode’s own Alma mater.
In 1491, Copernicus began his studies in the Department of Arts at the University of Krakow. However, he quickly became fascinated by astronomy, thanks to his exposure to many contemporary philosophers who taught or were associated with the Krakow School of Mathematics and Astrology, which was in its heyday at the time.
A comparison of the geocentric and heliocentric models of the universe. Credit: history.ucsb.edu
A comparison of the geocentric and heliocentric models of the universe. Credit: history.ucsb.edu
Copernicus’ studies provided him with a thorough grounding in mathematical-astronomical knowledge, as well as the philosophy and natural-science writings of Aristotle, Euclid, and various humanist writers. It was while at Krakow that Copernicus began collecting a large library on astronomy, and where he began his analysis of the logical contradictions in the two most popular systems of astronomy.
These models – Aristotle’s theory of homocentric spheres, and Ptolemy’s mechanism of eccentrics and epicycles – were both geocentric in nature. Consistent with classical astronomy and physics, they espoused that the Earth was at the center of the universe, and that the Sun, the Moon, the other planets, and the stars all revolved around it.
Before earning a degree, Copernicus left Krakow (ca. 1495) to travel to the court of his uncle Watzenrode in Warmia, a province in northern Poland. Having been elevated to the position of Prince-Bishop of Warmia in 1489, his uncle sought to place Copernicus in the Warmia canonry. However, Copernicus’ installation was delayed, which prompted his uncle to send him and his brother to study in Italy to further their ecclesiastic careers.
In 1497, Copernicus arrived in Bologna and began studying at the Bologna University of Jurists’. While there, he studied canon law, but devoted himself primarily to the study of the humanities and astronomy. It was also while at Bologna that he met the famous astronomer Domenico Maria Novara da Ferrara and became his disciple and assistant.
The Geocentric View of the Solar System
An illustration of the Ptolemaic geocentric system by Portuguese cosmographer and cartographer Bartolomeu Velho, 1568. Credit: bnf.fr
Over time, Copernicus’ began to feel a growing sense of doubt towards the Aristotelian and Ptolemaic models of the universe. These included the problematic explanations arising from the inconsistent motion of the planets (i.e. retrograde motion, equants, deferents and epicycles), and the fact that Mars and Jupiter appeared to be larger in the night sky at certain times than at others.
Hoping to resolve this, Copernicus used his time at the university to study Greek and Latin authors (i.e. Pythagoras, Cicero, Pliny the Elder, Plutarch, Heraclides and Plato) as well as the fragments of historic information the university had on ancient astronomical, cosmological and calendar systems – which included other (predominantly Greek and Arab) heliocentric theories.
In 1501, Copernicus moved to Padua, ostensibly to study medicine as part of his ecclesiastical career. Just as he had done at Bologna, Copernicus carried out his appointed studies, but remained committed to his own astronomical research. Between 1501 and 1503, he continued to study ancient Greek texts; and it is believed that it was at this time that his ideas for a new system of astronomy – whereby the Earth itself moved – finally crystallized.
The Copernican Model (aka. Heliocentrism):
In 1503, having finally earned his doctorate in canon law, Copernicus returned to Warmia where he would spend the remaining 40 years of his life. By 1514, he began making his Commentariolus (“Little Commentary”) available for his friends to read. This forty-page manuscript described his ideas about the heliocentric hypothesis, which was based on seven general principles.
These seven principles stated that: Celestial bodies do not all revolve around a single point; the center of Earth is the center of the lunar sphere—the orbit of the moon around Earth; all the spheres rotate around the Sun, which is near the center of the Universe; the distance between Earth and the Sun is an insignificant fraction of the distance from Earth and Sun to the stars, so parallax is not observed in the stars; the stars are immovable – their apparent daily motion is caused by the daily rotation of Earth; Earth is moved in a sphere around the Sun, causing the apparent annual migration of the Sun; Earth has more than one motion; and Earth’s orbital motion around the Sun causes the seeming reverse in direction of the motions of the planets.
Heliocentric Model
Andreas Cellarius’s illustration of the Copernican system, from the Harmonia Macrocosmica (1708). Credit: Public Domain
Thereafter he continued gathering data for a more detailed work, and by 1532, he had come close to completing the manuscript of his magnum opus – De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres). In it, he advanced his seven major arguments, but in more detailed form and with detailed computations to back them up.
However, due to fears that the publication of his theories would lead to condemnation from the church (as well as, perhaps, worries that his theory presented some scientific flaws) he withheld his research until a year before he died. It was only in 1542, when he was near death, that he sent his treatise to Nuremberg to be published.
Death:
Towards the end of 1542, Copernicus suffered from a brain hemorrhage or stroke which left him paralyzed. On May 24th, 1543, he died at the age of 70 and was reportedly buried in the Frombork Cathedral in Frombork, Poland. It is said that on the day of his death, May 24th 1543 at the age of 70, he was presented with an advance copy of his book, which he smiled upon before passing away.
In 2005, an archaeological team conducted a scan of the floor of Frombork Cathedral, declaring that they had found Copernicus’ remains. Afterwards, a forensic expert from the Polish Police Central Forensic Laboratory used the unearthed skull to reconstruct a face that closely resembled Copernicus’ features. The expert also determined that the skull belonged to a man who had died around age 70 – Copernicus’ age at the time of his death.
These findings were backed up in 2008 when a comparative DNA analysis was made from both the remains and two hairs found in a book Copernicus was known to have owned (Calendarium Romanum Magnum, by Johannes Stoeffler). The DNA results were a match, proving that Copernicus’ body had indeed been found.
Copernicus' 2010 grave in Frombork Cathedral, acknowledging him as the father of heiocentirsm.Credit:
Copernicus’ 2010 grave in Frombork Cathedral, acknowledging him as a church canon and the father of heliocentricism. Credit: Wikipedia/Holger Weinandt
On May 22nd, 2010, Copernicus was given a second funeral in a Mass led by Józef Kowalczyk, the former papal nuncio to Poland and newly named Primate of Poland. Copernicus’ remains were reburied in the same spot in Frombork Cathedral, and a black granite tombstone (shown above) now identifies him as the founder of the heliocentric theory and also a church canon. The tombstone bears a representation of Copernicus’ model of the solar system – a golden sun encircled by six of the planets.
Legacy:
Despite his fears about his arguments producing scorn and controversy, the publication of his theories resulted in only mild condemnation from religious authorities. Over time, many religious scholars tried to argue against his model, using a combination of Biblical canon, Aristotelian philosophy, Ptolemaic astronomy, and then-accepted notions of physics to discredit the idea that the Earth itself would be capable of motion.
However, within a few generation’s time, Copernicus’ theory became more widespread and accepted, and gained many influential defenders in the meantime. These included Galileo Galilei (1564-1642), who’s investigations of the heavens using the telescope allowed him to resolve what were seen at the time as flaws in the heliocentric model.
These included the relative changes in the appearances of Mars and Jupiter when they are in opposition vs. conjunction to the Earth. Whereas they appear larger to the naked eye than Copernicus’ model suggested they should, Galileo proved that this is an illusion caused by the behavior of light at a distance, and can be resolved with a telescope.
1973 Federal Republic of Germany 5-mark silver coin commemorating 500th anniversary of Copernicus' birth. Credit: Wikipedia/Berlin-George
1973 Federal Republic of Germany 5-mark silver coin commemorating 500th anniversary of Copernicus’ birth. Credit: Wikipedia/Berlin-George
Through the use of the telescope, Galileo also discovered moons orbiting Jupiter, Sunspots, and the imperfections on the Moon’s surface, all of which helped to undermine the notion that the planets were perfect orbs, rather than planets similar to Earth. While Galileo’s advocacy of Copernicus’ theories resulted in his house arrest, others soon followed.
German mathematician and astronomer Johannes Kepler (1571-1630) also helped to refine the heliocentric model with his introduction of elliptical orbits. Prior to this, the heliocentric model still made use of circular orbits, which did not explain why planets orbited the Sun at different speeds at different times. By showing how the planet’s sped up while at certain points in their orbits, and slowed down in others, Kepler resolved this.
In addition, Copernicus’ theory about the Earth being capable of motion would go on to inspire a rethinking of the entire field of physics. Whereas previous ideas of motion depended on an outside force to instigate and maintain it (i.e. wind pushing a sail) Copernicus’ theories helped to inspire the concepts of gravity and inertia. These ideas would be articulated by Sir Isaac Newton, who’s Principia formed the basis of modern physics and astronomy.
Today, Copernicus is honored (along with Johannes Kepler) by the liturgical calendar of the Episcopal Church (USA) with a feast day on May 23rd. In 2009, the discoverers of chemical element 112 (which had previously been named ununbium) proposed that the International Union of Pure and Applied Chemistry rename it copernicum (Cn) – which they did in 2011.
Crater Copernicus on the Moon. Mosaic of photos by Lunar Reconnaissance Orbiter, . Credit: NASA/LRO
Mosaic image of the Copernicus Crater on the Moon, taken by the Lunar Reconnaissance Orbiter, . Credit: NASA/LRO
In 1973, on the 500th anniversary of his birthday, the Federal Republic of Germany (aka. West Germany) issued a 5 Mark silver coin (shown above) that bore Copernicus’ name and a representation of the heliocentric universe on one side.
In August of 1972, the Copernicus – an Orbiting Astronomical Observatory created by NASA and the UK’s Science Research Council – was launched to conduct space-based observations. Originally designated OAO-3, the satellite was renamed in 1973 in time for the 500th anniversary of Copernicus’ birth. Operating until February of 1981, Copernicus proved to be the most successful of the OAO missions, providing extensive X-ray and ultraviolet information on stars and discovering several long-period pulsars.
Two craters, one located on the Moon, the other on Mars, are named in Copernicus’ honor. The European Commission and the European Space Agency (ESA) is currently conducting the Copernicus Program. Formerly known as Global Monitoring for Environment and Security (GMES), this program aims at achieving an autonomous, multi-level operational Earth observatory.
On February 19th, 2013, the world celebrated the 540th anniversary of Copernicus’ birthday. Even now, almost five and a half centuries later, he is considered one of the greatest astronomers and scientific minds that ever lived. In addition to revolutionizing the fields of physics, astronomy, and our very concept of the laws of motion, the tradition of modern science itself owes a great debt to this noble scholar who placed the truth above all else.

Friday, 3 July 2015

Russian Progress Launch Restores Critical Cargo Lifeline to Space Station

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
A sigh of relief was heard worldwide with today’s (July 3) successful launch to orbit of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome, signifying the restoration of Russia’s critical cargo lifeline to the International Space Station (ISS), some two months after the devastating launch failure of the prior Progress 59 spaceship on April 28.
Friday’s triumphant Progress launch also comes just five days after America’s cargo deliveries to the ISS were put on hold following the spectacular failure of a commercial SpaceX Falcon 9 rocket launched from the Florida Space Coast on Sunday, June 28, carrying the unpiloted SpaceX Dragon CRS-7 which broke up in flight.
The Progress 60 resupply ship, also known as Progress M-28M, was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.
The Soyuz-U carrier rocket launched Progress into blue skies at 10:55 a.m. local time in Baikonur (12:55 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. The launch was webcast live on NASA TV.
“Everything went by the book,” said NASA commentator Rob Navias during the webcast. “Everything is nominal.”
The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
The International Space Station was flying about 249 miles over northwestern Sudan, near the border with Egypt and Libya, at the moment of liftoff. Note: See an exquisite photo of the Egyptian pyramid photographed from the ISS in my recent story – here.
After successfully separating from the third stage Progress reach its preliminary orbit less than 10 minutes after launch from Baikonur and deployed its solar arrays and navigational antennas as planned.
Live video was received from Progress after achieving orbit showing a beautiful view of the Earth below.
A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV
A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV
A two day chase of 34 orbits of Earth over the next two days will bring the cargo craft to the vicinity of the station for a planned docking to the Russian segment of the orbiting laboratory at 3:13 a.m. Sunday, July 5.
NASA TV will provide live coverage of the arrival and docking operation to the Pirs Docking Compartment starting at 2:30 a.m. EDT on Sunday, July 5.
Watch live on NASA TV and online at http://www.nasa.gov/nasatv
NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka are currently living and working aboard the station as the initial trio of Expedition 44 following the safe departure and landing of the three person Expedition 43 crew in mid June.
Kelly and Kornienko comprise the first ever 1 Year Crew to serve aboard the ISS and are about three months into their stay in space.
In the span of just the past eight months, three launches of unmanned cargo delivery runs to the space station have failed involving both American and Russian rockets.
The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.
The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive and frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.
The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the Soyuz booster rockets third stage and spun wildly out of control on April 28, 2015 and eventually crashed weeks later during an uncontrolled plummet back to Earth over the ocean on May 8. The loss was traced to an abnormal third stage separation event.
Roscosmos, the Russian Federal Space Agency, switched this Progress vehicle to an older version of the Soyuz rocket which had a different third stage configuration that was not involved in the April failure.
The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV
The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV
Russian officials decided to move up the launch by about a month from its originally planned launch date in August in order to restock the station crew with critically needed supplies as soon as practical.
Following Sundays SpaceX cargo launch failure, the over 6100 pounds of new supplies on Progress are urgently needed more than ever before. Loaded aboard are 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, tools and spare parts and parcels for the crew.
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com
In the wake of the trio of American and Russian launch failures, the crews current enjoy only about four month of supplies reserves compared to the more desirable six months stockpile in case of launch mishaps.
Progress 60 will extend the station supplies by about a month’s time.
The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.
These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Kelly and Kornienko.
The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.
The three cargo launch failures so close together are unprecedented in the history of the ISS program over the past two decades.
The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.comAntares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.