Tuesday, 29 September 2015

Water on Mars: What Does It Really Mean?

A new find of liquid water fuels hopes that life may yet exist on the red planet.
Picture of an impact crater on MarsTraces of salty water have been detected in in gullies and craters on Mars, such as this impact crater                                                                                                                                        
It’s tempting to say that the announcement of liquid water on the surface of Mars heralds a new era in Martian exploration.
You might think that the first human explorers on Mars will park next to a salty stream and use it to manufacture fresh drinking water. Maybe they could even find life in damp Martian nooks and crannies, areas where the dusty red planet can still fuel microbes.
Reality is much more subtle. Finding evidence for flowing water is not the same as finding life. Right now, scientists don’t know where this water is coming from, or if the chemistry in these Martian seeps is even life-friendly. And unfortunately, chances are it will be a long time before we can get there to find out.

“It’s hard to get a spacecraft clean enough to send a lander or rover there right now,” says Bethany Ehlmann, a planetary geologist at Caltech, referring to concerns about hitchhiking Earth microbes contaminating the Martian surface.
But there's still reason for excitement. These seasonal seeps, which scientists call recurring slope lineae, “are probably the best place to look for modern life,” she says.


Odds of Life

Here's what scientists know. Analyses have confirmed that enigmatic streaks that appear in summertime on the planet's slopes are produced by liquid water—salty water, perhaps capable of sustaining chemical reactions and even life. 
Like Mars itself, the dark watery streaks are ruggedly beautiful, as seen in photographs taken by the HiRISE camera aboard the Mars Reconnaissance Orbiter. But for all their picturesque drama, these dark marks represent more of a trickle than a flow.
It’s possible they’re fed by some kind of underground aquifer, or a buried icefield that thaws in warmer weather and sends melted Mars water sliding downhill.
While not outside the realm of possibility—we do know there’s ice buried beneath the Martian surface—such scenarios aren’t as likely as the one scientists favor: The water comes from the atmosphere. If that's true, it’ll be a much tougher resource to tap into.
But how could water from the atmosphere form these dark streaks? On Mars, as on Earth, salts on the surface can absorb atmospheric water vapor and trap it in their crystal structures. Then, when the soggy crystals warm up, they dissolve. The whole liquidy mix surrenders to the tug of gravity, and off it goes, tumbling downhill.
In Chile’s super-dry Atacama desert, this exact type of system—called deliquescence—is the key to supporting some rather extreme life, says NASA astrobiologist Chris McKay.
But there’s no guarantee this is happening on Mars. McKay notes that the type of salts near the Martian streaks, called perchlorates, form different watery mixtures than the salts we’re most used to on Earth. In fact, it’s possible the perchlorate streaks could behave similarly to Antarctica’s Don Juan Pond, which is the saltiest liquid water body on Earth—and totally dead.
“Such a brine is not suitable for life and is of no interest biologically,” McKay says. “Nothing can live in the brine of Don Juan Pond.”

Follow the Water

So, seeps fueled by atmospheric humidity might not make the most convenient water well for human colonists, and they might not even be ideal habitats for Martian microbes—but wouldn’t it be worth finding out?
Of course. What we know so far, based on the single example of Earth, is that life tends to show up wherever there’s water. That’s why NASA’s search for life beyond Earth has been driven by the mantra, “Follow the water.”
The frustrating irony here is that NASA can’t follow this particular water. Not yet.
Mars Once Held an Ocean An ancient sea once covered a fifth of the planet’s surface, astronomers found by calculating how much water the planet has lost over time.
Sending a spacecraft to an area where liquid water flows is much too risky, cautions NASA’s Office of Planetary Protection. Finding water in the streaks will brand them as a "special region," an area where spacecraft can land only after thorough cleaning or sterilization, says Ernst Hauber of the German Aerospace Center.
If hitchhiking microbes were to somehow survive the journey to Mars and find themselves in a briny bath, it’s possible they could gain a foothold and contaminate the red planet. Such a scenario would not only complicate any future detection of life on Mars, but also introduce a potential disaster: Think about how great we are at hastening the spread of invasive species on Earth.
It’s certainly worth the caution, though humans walking on Mars (which some say is the next goal in solar system exploration) are much more likely to shed microbes than a sterilized robot is, and Earth microbes aren't necessarily likely to thrive in Mars brines.
If there’s one big story from the past decade of planetary exploration, it’s that water is everywhere. It’s tucked into moon dust, frozen in Mercury’s shadowed craters, streaming off the backs of comets, and sequestered inside the shells of icy moons. Mars, finally, has joined the population of bodies where we know water flows—and that’s interesting enough on its own, without the breathless speculation.
“Modern Mars is right ‘on the edge,' ” Ehlmann says, as an active world where liquid water exists even today. “Just a slight tweak in climate could make waters even more widespread.”
 

Monday, 28 September 2015

Perplexing Pluto: New ‘Snakeskin’ Image and More from New Horizons



The newest high-resolution images of Pluto from NASA’s New Horizons are both dazzling and mystifying, revealing a multitude of previously unseen topographic and compositional details. The image below — showing an area near the line that separates day from night — captures a vast rippling landscape of strange, aligned linear ridges that has astonished New Horizons team members.
“It’s a unique and perplexing landscape stretching over hundreds of miles,” said William McKinnon, New Horizons Geology, Geophysics and Imaging (GGI) team deputy lead from Washington University in St. Louis. “It looks more like tree bark or dragon scales than geology. This’ll really take time to figure out; maybe it’s some combination of internal tectonic forces and ice sublimation driven by Pluto’s faint sunlight.”
The “snakeskin” image of Pluto’s surface is just one tantalizing piece of data New Horizons sent back in recent days. The spacecraft also captured the highest-resolution color view yet of Pluto, as well as detailed spectral maps and other high-resolution images.
In this extended color image of Pluto taken by NASA’s New Horizons spacecraft, rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s day-night terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Credits: NASA/JHUAPL/SWRI
In this extended color image of Pluto taken by NASA’s New Horizons spacecraft, rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s day-night terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Credits: NASA/JHUAPL/SWRI
The new “extended color” view of Pluto – taken by New Horizons’ wide-angle Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14 and downlinked to Earth on Sept. 19 – shows the extraordinarily rich color palette of Pluto.
“We used MVIC’s infrared channel to extend our spectral view of Pluto,” said John Spencer, a GGI deputy lead from Southwest Research Institute (SwRI) in Boulder, Colorado. “Pluto’s surface colors were enhanced in this view to reveal subtle details in a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a wonderfully complex geological and climatological story that we have only just begun to decode.”
This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA’s spacecraft’s Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. Credits: NASA/JHUAPL/SWRI
This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA’s spacecraft’s Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. Credits: NASA/JHUAPL/SWRI
Additionally, a high-resolution swath across Pluto taken by New Horizons’ narrow-angle Long Range Reconnaissance Imager (LORRI) on July 14, and downlinked on Sept. 20, homes in on details of Pluto’s geology. These images — the highest-resolution yet available of Pluto — reveal features that resemble dunes, the older shoreline of a shrinking glacial ice lake, and fractured, angular water ice mountains with sheer cliffs. Color details have been added using MVIC’s global map shown above.
High-resolution images of Pluto taken by NASA’s New Horizons spacecraft just before closest approach on July 14, 2015, reveal features as small as 270 yards (250 meters) across, from craters to faulted mountain blocks, to the textured surface of the vast basin informally called Sputnik Planum. Enhanced color has been added from the global color image. This image is about 330 miles (530 kilometers) across. For optimal viewing, zoom in on the image on a larger screen. Credits: NASA/JHUAPL/SWRI
High-resolution images of Pluto taken by NASA’s New Horizons spacecraft just before closest approach on July 14, 2015, reveal features as small as 270 yards (250 meters) across, from craters to faulted mountain blocks, to the textured surface of the vast basin informally called Sputnik Planum. Enhanced color has been added from the global color image. This image is about 330 miles (530 kilometers) across. For optimal viewing, zoom in on the image on a larger screen. Credits: NASA/JHUAPL/SWRI
This closer look at the smooth, bright surface of the informally named Sputnik Planum shows that it is actually pockmarked by dense patterns of pits, low ridges and scalloped terrain. Dunes of bright volatile ice particles are a possible explanation, mission scientists say, but the ices of Sputnik may be especially susceptible to sublimation and formation of such corrugated ground.
High-resolution images of Pluto taken by NASA’s New Horizons spacecraft just before closest approach on July 14, 2015, are the sharpest images to date of Pluto’s varied terrain—revealing details down to scales of 270 meters. In this 75-mile (120-kilometer) section of the taken from the larger, high-resolution mosaic above, the textured surface of the plain surrounds two isolated ice mountains. Credits: NASA/JHUAPL/SWRI
High-resolution images of Pluto taken by NASA’s New Horizons spacecraft just before closest approach on July 14, 2015, are the sharpest images to date of Pluto’s varied terrain—revealing details down to scales of 270 meters. In this 75-mile (120-kilometer) section of the taken from the larger, high-resolution mosaic above, the textured surface of the plain surrounds two isolated ice mountains. Credits: NASA/JHUAPL/SWRI
Beyond the new images, new compositional information comes from a just-obtained map of methane ice across part of Pluto’s surface that reveals striking contrasts: Sputnik Planum has abundant methane, while the region informally named Cthulhu Regio shows none, aside from a few isolated ridges and crater rims. Mountains along the west flank of Sputnik lack methane as well.
The distribution of methane across the surface is anything but simple, with higher concentrations on bright plains and crater rims, but usually none in the centers of craters or darker regions.  Outside of Sputnik Planum, methane ice appears to favor brighter areas, but scientists aren’t sure if that’s because methane is more likely to condense there or that its condensation brightens those regions.
The Ralph/LEISA infrared spectrometer on NASA’s New Horizons spacecraft mapped compositions across Pluto’s surface as it flew by on July 14. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors here, and lower abundances shown in black. Data have only been received so far for the left half of Pluto’s disk. At right, the methane map is merged with higher-resolution images from the spacecraft’s Long Range Reconnaissance Imager (LORRI). Credits: NASA/JHUAPL/SWRI
The Ralph/LEISA infrared spectrometer on NASA’s New Horizons spacecraft mapped compositions across Pluto’s surface as it flew by on July 14. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors here, and lower abundances shown in black. Data have only been received so far for the left half of Pluto’s disk. At right, the methane map is merged with higher-resolution images from the spacecraft’s Long Range Reconnaissance Imager (LORRI). Credits: NASA/JHUAPL/SWRI
“It’s like the classic chicken-or-egg problem,” said Will Grundy, New Horizons surface composition team lead from Lowell Observatory in Flagstaff, Arizona. “We’re unsure why this is so, but the cool thing is that New Horizons has the ability to make exquisite compositional maps across the surface of Pluto, and that’ll be crucial to resolving how enigmatic Pluto works.”
“With these just-downlinked images and maps, we’ve turned a new page in the study of Pluto beginning to reveal the planet at high resolution in both color and composition,” added New Horizons Principal Investigator Alan Stern, of SwRI. “I wish Pluto’s discoverer Clyde Tombaugh had lived to see this day.”
Source: NASA

Thursday, 24 September 2015

Radio Telescopes Could Spot Stars Hidden in the Galactic Centre



The centre of our Milky Way galaxy is a mysterious place. Not only is it thousands of light-years away, it’s also cloaked in so much dust that most stars within are rendered invisible. Harvard researchers are proposing a new way to clear the fog and spot stars hiding there. They suggest looking for radio waves coming from supersonic stars. The team will publish its results in a paper in Monthly Notices of the Royal Astronomical Society.
“There’s a lot we don’t know about the galactic centre, and a lot we want to learn,” says lead author Idan Ginsburg of the Harvard-Smithsonian Center for Astrophysics (CfA). “Using this technique, we think we can find stars that no one has seen before.”
The centre of the Milky Way. Image made with ISAAC, the Very Large Telescope (VLT) near- and mid-infrared spectrometer and camera. Credit: ESO/R. Schoedel. CC-BY
The centre of the Milky Way. Image made with ISAAC, the Very Large Telescope (VLT) near- and mid-infrared spectrometer and camera. Credit: ESO/R. Schoedel. CC-BY, click for full image
The long path from the centre of our galaxy to Earth is so choked with dust that out of every trillion photons of visible light coming our way, only one will reach our telescopes. Radio waves, from a different part of the electromagnetic spectrum, have lower energies and longer wavelengths. They can pass through the dust unimpeded.
On their own, stars aren’t bright enough in the radio for us to detect them at such distances. However, if a star is traveling through gas faster than the speed of sound, the situation changes. Material blowing off of the star as a stellar wind can plough into the interstellar gases and create a shock wave. And through a process called synchrotron radiation, electrons accelerated by that shock wave produce radio emission that we could potentially detect.
“In a sense, we’re looking for the cosmic equivalent of a sonic boom from an airplane,” explains Ginsburg.
To create a shock wave, the star would have to be moving at a speed of thousands of kilometres per second. This is possible in the galactic centre since the stars there are influenced by the strong gravity of a supermassive black hole. When an orbiting star reaches its closest approach to the black hole, it can easily acquire the required speed.
The researchers suggest looking for this effect from one already known star called S2. This star, which is hot and bright enough to be seen in the infrared despite all the dust, will make its closest approach to the Galactic centre in late 2017 or early 2018. When it does, radio astronomers can target it to look for radio emission from its shock wave.
“S2 will be our litmus test. If it’s seen in the radio, then potentially we can use this method to find smaller and fainter stars – stars that can’t be seen any other way,” says co-author Avi Loeb, also of the CfA.
Source: RAS

Tuesday, 22 September 2015

Nearby red dwarves could reveal planet secrets

An accidental find of a collection of young red dwarf stars close to our solar system could give us a rare glimpse of slow-motion planet formation

Date:
September 15, 2015
Source:
Australian National University
Summary:
An accidental find of a collection of young red dwarf stars close to our solar system could give us a rare glimpse of slow-motion planet formation. Astronomers have found large discs of dust around two of the stars, tell-tale signs of planets in the process of forming. 
 
 
Artist's impression of a dusty disc around a red dwarf star.
Credit: NASA/JPL-Caltech/T. Pyle (SSC)
An accidental find of a collection of young red dwarf stars close to our solar system could give us a rare glimpse of slow-motion planet formation.
Astronomers from The Australian National University (ANU) and UNSW Canberra found large discs of dust around two of the stars, tell-tale signs of planets in the process of forming.
"We think the Earth and all the other planets formed from discs like these so it is fascinating to see a potential new solar system evolving," said the lead researcher Dr Simon Murphy, from the ANU Research School of Astronomy and Astrophysics.
"However, other stars of this age usually don't have discs any more. The red dwarf discs seem to live longer than those of hotter stars like the Sun. We don't understand why," said Dr Murphy.
The discovery of objects like these two challenges current theories about planet formation, said co-author Professor Warrick Lawson from UNSW Canberra. "It suggests the planet forming process can endure a lot longer than previously thought," he said
The red dwarves may also host planets that have already formed from the dusty discs, Dr Murphy said.
"I think a lot of telescopes will be turned toward them in the next few years to look for planets."
The giveaway that the red dwarves had discs around them was an unusual glow in the infrared spectrum of the stars. Although the discs were not observed directly, Dr Murphy said such close red dwarves offered a good chance of catching a rare direct glimpse of a disc, or even a planet, by employing specialised telescopes.
"Because they are fainter than other stars and there is not as much glare, young red dwarves are ideal places to directly pick out recently formed planets," he said.
Our ability to detect these dim stars has improved dramatically in recent decades, revealing a wealth of information, said Professor Lawson. "Less than 20 years ago, the notion that the nearest part of the Galaxy would be littered with young stars was a completely novel one," he said.
"Most of these objects lie in the southern sky and thus are best accessed by telescopes in the southern hemisphere, including those operated by the ANU and Australia more broadly."

Wednesday, 16 September 2015

The 10 Best Space and Astronomy Sites on the Internet

Space is something that fascinates many.  Every day there are technological advances, new research being carried out and even historical space related anniversaries.  Where would we be without those valuable space dedicated blogs and websites?  There are so many sources of information readily available at our fingertips these days, and I am sure you have your favourites, but here is my top 10 list of astronomy blogs and websites.  I would love to hear if you have any others that are not on my list, website and blogs that I can try out too!


10 – Our local Astronomy groups websites
Northern Ireland Amateur Astronomy Society 
Irish Astronomical Association 
In the North of Ireland we are lucky to have two astronomical societies dedicated to night sky viewing, providing telescope advice and generally bringing astronomy to the masses!  These sites provide a great source of information on events both at home and abroad and have forums to help with any night sky or equipment queries.  From personal experience both societies are brilliant and excellent at what they do.  If you haven’t visited their respective websites they are well worth a visit!  Tell them Sinead from the Planetarium sent you!
image of logos

9 – www.kidsastronomy.com
If you have children, or are a big kid yourself this website is for you!  With both videos and games, the kids will have hours of fun whilst learning more about our world and the Solar System at the same time.  It even has information on topics such as comets and meteorites.  Working in the education team at the Planetarium I know that one of the most common questions from children is “How does a Black Hole work?”  Well today I learned from this website that a black hole uses the power of gravity to pull things towards it, even adults can learn from this website too.  The site is very easy to navigate and the information is in digestible chunks.
image of kids astronomy



8 – www.astronomynow.com
Astronomy Now is a great monthly magazine available to purchase, but they also have a very good website with astronomy news.  You could read some of their articles online, and it could inspire you to take a subscription.  Their archive of articles is extensive and is well worth a visit.  They also provide a really nice printable star chart.
image of astronomy now

7 – www.universetoday.com
Looking to be kept up to date with all the latest space related news?  If the answer is yes then Universe Today is for you.  This blog is jammed packed full of all the latest astronomical news and events and encourages comments from visitors.  It also boasts a great way for other blogs/website to get involved through its Carnival of Space feature.  Each week a different webmaster or blogger hosts the carnival. Here they get the opportunity to showcase articles written on the topic of space.  If you are just starting out it is a great way to reach the masses with your articles.
image of universe today

6 – www.slate.com
Formally known as Bad Astronomy on the Discover website, this blog now resides at slate.com and contains interesting and through-provoking stories.  The popularity of the blog can be seen through how many comments are left after each article, tweets on Twitter and likes on Facebook.  As an example the story about black holes posted 2 days ago already has 422 comments, 2995 likes on Facebook and has been tweeted 535 times!  That is an amazing amount of feedback in just 48 hours.  To get to the Bad Astronomy section on this website just click on “Health and Science” on the homepage where you will find other related stories and blogs.  Then just look for the Bad Astronomy link.
image of BA logo

5 – www.space.com
Launched in 1999, space.com claims to be the world’s No. 1 source for news of astronomy, skywatching, space exploration, commercial spaceflight and related technologies.  It does truly have the latest discoveries, missions, trends and futuristic ideas.  This is one of my favourite sites for the look and feel of the website.  I love the black background with what looks like meteors; it gives it a nice “spacey” feel.  It is also really easy to navigate around and has a really nice shop to get some ideas on astronomical gifts for birthdays, Christmas, or as a special treat for yourself!  Their stories are short, sharp ad to the point which is great and a feature I really enjoy is their “Image of the Day”.
image of spacedotcom

4 – www.skyandtelescope.com
Sky and Telescope is a magazine available to purchase, but it also has a great website full of information, interesting articles and up-to-date space related news.  What I like about this website is that it gives you beginner guides in all things astronomy from stargazing to astrophotography.  Another really nice feature on his website is “This week’s sky at a glance”.  Here you can study objects that you can expect to see in the night sky if it is nice and clear.  It gives information on easy to spot constellations, the Moon phases and contains a Planet watch.  It is number 4 on my list for a reason…. Give it a visit!
image of sky and telescope

3 – www.heavens-above.com
Ok, I will let you in on a little secret….. this is my secret obsession!  I love this website!  You can get star charts, information on the Solar System and so much more.  It looks very basic, but the reason why I speak so highly of Heavens Above is because it gives up to date information on the greatest man-made structure in space, the International Space Station.  All you have to do is input your location and it will tell you when the space station will appear.  There can be weeks when it won’t be visible overhead, then all of a sudden you will have weeks filled full of ISS spotting.  The website also gives information on the brightness of the ISS, the height and how long it will be visible for.  When you see the space station from Earth it will look like a tiny bright star moving across the sky.  Some people mistake it for an aeroplane and some even could believe it is a UFO!  If you do nothing today please visit this site and see if the space station is visible tonight.  When you spot it, just think that there are astronauts and cosmonauts looking right back down at you!
image of heavensabove

2 – www.nasa.gov
My list would be incomplete if I didn’t list the official NASA website in my Top 10.  There is so much information on the site that it would take an eternity of sift through and read everything.  There is information to suit amateur and professionals alike interested in all things space.  My favourite parts of the site are the videos and images.  NASA provides an “Image of the Day” feature which produces some amazing and wonderful images and NASA TV is also a favourite alongside their Twitter feed containing Tweets from astronauts.  This is the ultimate website for space fanatics!
 image of nasadotcom

1 – Armagh Planetarium’s Astronotes
www.armaghplanet.com/blog
I have put the Astronotes Blog from the Armagh Planetarium at number 1.  If you are reading this article and have a glance through the other articles on the blog you will see why it’s number 1.  Our Astronotes blog has all the latest news and views from the fascinating worlds of astronomy and space exploration.  The articles are written by the staff here at the Planetarium and the blog is produced and maintained by our Science Communicator Colin Johnston.  Articles are categorised into 6 heading; Solar System, Our Galaxy, Universe, Space Flight, Monthly Sky Notes and Weird and Fun.  We always try and produce relevant news, interesting stories and have a bit of fun at the same time.  I hope you agree that it is great.  We always welcome comments and love answering and queries and enjoy debate produced through our blog.  So if you are reading our articles, leave us a comment!
image of astronotes

Monday, 14 September 2015

The Moons of Saturn



Saturn is well known for being a gas giant, and for its impressive ring system. But would it surprise you to know that this planet also has the second-most moons in the Solar System, second only to Jupiter? Yes, Saturn has at least 150 moons and moonlets in total, though only 53 of them have been given official names.
Saturn and its largest moons. Image credit: NASA/JPL/SSI
Saturn and its largest moons. Image credit: NASA/JPL/SSI
Most of these moons are small, icy bodies that are little more than parts of its impressive ring system. In fact, 34 of the moons that have been named are less than 10 km in diameter while another 14 are 10 to 50 km in diameter. However, some of its inner and outer moons are among the largest and most dramatic in the Solar System, measuring between 250 and 5000 km in diameter and housing some of greatest mysteries in the Solar System.
Discovery and Naming:
Prior to the invention of telescopic photography,  eight of Saturn’s moons were observed using simple telescopes. The first to be discovered was Titan, Saturn’s largest moon, which was observed by Christiaan Huygens in 1655 using a telescope of his own design. Between 1671 and 1684, Giovanni Domenico Cassini discovered the moons of Tethys, Dione, Rhea and Iapetus – which he collectively named the “Sider Lodoicea” (Latin for “Louisian Stars”, after King Louis XIV of France).
In 1789, William Herschel discovered Mimas and Enceladus, while father-and-son astronomers W.C Bond and G.P. Bond discovered Hyperion in 1848 – which was independently discovered by William Lassell that same year. By the end of the 19th century, the invention of long-exposure photographic plates allowed for the discovery of more moons – the first of which Phoebe, observed in 1899 by W.H. Pickering.
Saturn’s moons (from left to right) Janus, Pandora, Enceladus, Mimas and Rhea. Rhea is on top of Saturn. Credit: NASA/JPL-Caltech/Space Science Institute
Saturn’s moons (from left to right) Janus, Pandora, Enceladus, Mimas and Rhea. Rhea is on top of Saturn. Credit: NASA/JPL-Caltech/Space Science Institute
In 1966, the tenth satellite of Saturn was discovered by French astronomer Audouin Dollfus, which was later named Janus. A few years later, it was realized that his observations could only be explained if another satellite had been present with an orbit similar to that of Janus. This eleventh moon was later named Epimetheus, which shares the same orbit with Janus and is the only known co-orbital in the Solar System.
By 1980, three additional moons were discovered and later confirmed by the Voyager probes. They were the trojan moons (see below) of Helene(which orbits Dione) as well as Telesto and Calypso (which orbit Tethys).
The study of the outer planets has since been revolutionized by the use of unmanned space probes. This began with the arrival of the Voyagerspacecraft to the Cronian system in 1980-81, which resulted in the discovery of three additional moons – Atlas, Prometheus, and Pandora – bringing the total to 17. By 1990, archived images also revealed the existence of Pan.
This was followed by the Cassini-Huygens mission, which arrived at Saturn in the summer of 2004. Initially, Cassini discovered three small inner moons, including Methone and Pallene between Mimas and Enceladus, as well as the second Lagrangian moon of Dione – Polydeuces. In November of 2004, Cassini scientists announced that several more moons must be orbiting within Saturn’s rings. From this data, multiple moonlets and the moons of Daphnis and Anthe have been confirmed.
The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and Hyperion (bottom). Credit: NASA/JPL/Space Science Institute
The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and Hyperion (bottom). Credit: NASA/JPL/Space Science Institute
The study of Saturn’s moons has also been aided by the introduction of digital charge-coupled devices, which replaced photographic plates by the end of the 20th century. Because of this, ground-based telescopes have begun to discovered several new irregular moons around Saturn. In 2000, three medium-sized telescopes found thirteen new moons with eccentric orbits that were of considerable distance from the planet.
In 2005, astronomers using the Mauna Kea Observatory announced the discovery of twelve more small outer moons. In 2006, astronomers using Japan’s Subaru Telescope at Mauna Kea reported the discovery of nine more irregular moons. In April of 2007, Tarqeq (S/2007 S 1) was announced, and in May of that same year, S/2007 S 2 and S/2007 S 3 were reported.
The modern names of Saturn’s moons were suggested by John Herschel (William Herschel’s son) in 1847. In keeping with the nomenclature of the other planets, he proposed they be named after mythological figures associated with the Roman god of agriculture and harvest – Saturn, the equivalent of the Greek Cronus. In particular, the seven known satellites were named after Titans, Titanesses and Giants – the brothers and sisters of Cronus.
In 1848, Lassell proposed that the eighth satellite of Saturn be named Hyperion after another Titan. When in the 20th century, the names of Titans were exhausted, the moons were named after different characters of the Greco-Roman mythology, or giants from other mythologies. All the irregular moons (except Phoebe) are named after Inuit and Gallic gods and Norse ice giants.
Inner Large Moons:
Saturn’s moons are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.
Saturn’s moon of Enceladus. Credit: NASA/JPL/Space Science Institute
Saturn’s moon of Enceladus. Credit: NASA/JPL/Space Science Institute
Saturn’s Inner Large Moons, which orbit within the E Ring (see below), include the larger satellites Mimas, Enceladus, Tethys, and Dione. These moons are all composed primarily of water ice, and are believed to be differentiated into a rocky core and an icy mantle and crust. With a diameter of 396 km and a mass of 0.4×1020 kg, Mimas is the smallest and least massive of these moons. It is ovoid in shape and orbits Saturn at a distance of 185,539 km with an orbital period of 0.9 days.
Enceladus, meanwhile, has a diameter of 504 km, a mass of 1.1×1020 km and is spherical in shape. It orbits Saturn at a distance of 237,948 km and takes 1.4 days to complete a single orbit. Though it is one of the smaller spherical moons, it is the only Cronian moon that is endogenously active – and one of the smallest known bodies in the Solar System that is geologically active. This results in features like the famous “tiger stripes” – a series of continuous, ridged, slightly curved and roughly parallel faults within the moon’s southern polar latitudes.
Large geysers have also been observed in the southern polar region that periodically release plumes of water ice, gas and dust which replenish Saturn’s E ring. These jets are one of several indications that Enceladus has liquid water beneath it’s icy crust, where geothermal processes release enough heat to maintain a warm water ocean closer to its core. With a geometrical albedo of more than 140%, Enceladus is one of the brightest known objects in the Solar System.
At 1066 km in diameter, Tethys is the second-largest of Saturn’s inner moons and the 16th-largest moon in the Solar System. The majority of its surface is made up of heavily cratered and hilly terrain and a smaller and smoother plains region. Its most prominent features are the large impact crater of Odysseus, which measures 400 km in diameter, and a vast canyon system named Ithaca Chasma – which is concentric with Odysseus and measures 100 km wide, 3 to 5 km deep and 2,000 km long.
Dione’s heavily cratered surface, as observed by the Cassini flyby in June, 2015. Credit: NASA/JPL
Dione’s heavily cratered surface, as observed by the Cassini flyby in June, 2015. Credit: NASA/JPL
With a diameter and mass of 1,123 km and 11×1020 kg, Dione is the largest inner moon of Saturn. The majority of Dione’s surface is heavily cratered old terrain, with craters that measure up to 250 km in diameter. However, the moon is also covered with an extensive network of troughs and lineaments which indicate that in the past it had global tectonic activity.
Large Outer Moons:
The Large Outer Moons, which orbit outside of the Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice and rock. Of these, Rhea is the second largest – measuring 1,527 km in diameter and 23×1020 kg in mass – and the ninth largest moon of the Solar System. With an orbital radius of 527,108 km, it is the fifth-most distant of the larger moons, and takes 4.5 days to complete an orbit.
Like other Cronian satellites, Rhea has a rather heavily cratered surface, and a few large fractures on its trailing hemisphere. Rhea also has two very large impact basins on its anti-Saturnian hemisphere – the Tirawa crater (similar to Odysseus on Tethys) and an as-yet unnamed crater – that measure 400 and 500 km across, respectively.
At 5150 km in diameter, and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryovolcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System beside Earth with bodies of liquid on its surface, in the form of methane–ethane lakes in Titan’s north and south polar regions.
With an orbital distance of 1,221,870 km, it is the second-farthest large moon from Saturn, and completes a single orbit every 16 days. Like Europa and Ganymede, it is believed that Titan has a subsurface ocean made of water mixed with ammonia, which can erupt to the surface of the moon and lead to cryovolcanism.
Hyperion is Titan’s immediate neighbor. At an average diameter of about 270 km, it is smaller and lighter than Mimas. It is also irregularly shaped and quite odd in composition. Essentially, the moon is an ovoid, tan-colored body with an extremely porous surface (which resembles a sponge).  The surface of Hyperion is covered with numerous impact craters, most of which are 2 to 10 km in diameter. It also has a highly unpredictable rotation, with no well-defined poles or equator.
At 1,470 km in diameter and 18×1020 kg in mass, Iapetus is the third-largest of Saturn’s large moons. And at a distance of 3,560,820 km from Saturn, it is the most distant of the large moons, and takes 79 days to complete a single orbit. Due to its unusual color and composition – its leading hemisphere is dark and black whereas its trailing hemisphere is much brighter – it is often called the “yin and yang” of Saturn’s moons.
The two sides of Iapetus, “Saturn’s yin yang moon”. Credit: NASA/JPL
The two sides of Iapetus, “Saturn’s yin yang moon”. Credit: NASA/JPL
Irregular Moons:
Beyond these larger moons are Saturn’s Irregular Moons. These satellites are small, have large-radii, are inclined, have mostly retrograde orbits, and are believed to have been acquired by Saturn’s gravity. These moons are made up of three basic groups – the Inuit Group, the Gallic Group, and the Norse Group.
The Inuit Group consists of five irregular moons that are all named from Inuit mythology – Ijiraq, Kiviuq, Paaliaq, Siarnaq, and Tarqeq. All have prograde orbits that range from 11.1 to 17.9 million km, and from 7 to 40 km in diameter. They are all similar in appearance (reddish in hue) and have orbital inclinations of between 45 and 50°.
The Gallic group are a group of four prograde outer moons named for characters in Gallic mythology -Albiorix, Bebhionn, Erriapus, and Tarvos. Here too, the moons are similar in appearance and have orbits that range from 16 to 19 million km. Their inclinations are in the 35°-40° range, their eccentricities around 0.53, and they range in size from 6 to 32 km.
Last, there is the Norse group, which consists of 29 retrograde outer moons that take their names from Norse mythology. These satellites range in size from 6 to 18 km, their distances from 12 and 24 million km, their inclinations between 136° and 175°, and their eccentricities between 0.13 and 0.77. This group is also sometimes referred to as the Phoebe group, due to the presence of a single larger moon in the group – which measures 240 km in diameter. The second largest, Ymir, measures 18 km across.
Saturn’s rings and moons Credit: NASA
Saturn’s rings and moons Credit: NASA
Within the Inner and Outer Large Moons, there are also those belonging toAlkyonide group. These moons – Methone, Anthe, and Pallene – are named after the Alkyonides of Greek mythology, are located between the orbits of Mimas and Enceladus, and are among the smallest moons around Saturn.
Some of the larger moons even have moons of their own, which are known as Trojan moons. For instance, Tethys has two trojans – Telesto and Calypso, while Dione has Helene and Polydeuces.
Formation:
It is thought that Saturn’s moon of Titan, its mid-sized moons and rings developed in a way that is closer to the Galilean moons of Jupiter. In short, this would mean that the regular moons formed from a circumplanetary disc, a ring of accreting gas and solid debris similar to a protoplanetary disc. Meanwhile, the outer, irregular moons are believed to have been objects that were captured by Saturn’s gravity and remained in distant orbits.
However, there are some variations on this theory. In one alternative scenario, two Titan-sized moons were formed from an accretion disc around Saturn; the second one eventually breaking up to produce the rings and inner mid-sized moons. In another, two large moons fused together to form Titan, and the collision scattered icy debris that formed to create the mid-sized moons.
However, the mechanics of how the moon’s formed remains a mystery for the time being. With additional missions mounted to study the atmospheres, compositions and surfaces of these moons, we may begin to understand where they truly came from.
Much like Jupiter, and all the other gas giants, Saturn’s system of satellites is extensive as it is impressive. In addition to the larger moons that are believed to have formed from a massive debris field that once orbited it, it also has countless smaller satellites that were captured by its gravitational field over the course of billions of years. One can only imagine how many more remain to be found orbiting the ringed giant.
Want more information about Saturn’s moons? Check out NASA’s Cassini information on the moons of Saturn, and more from NASA’s Solar System Exploration site.
Reference:
NASA Solar System Exploration: Saturn’s Moons

Thursday, 10 September 2015

Sweeping over the south pole of Mars


Posted Yesterday
Mars south pole and beyond
Mars south pole and beyond
An unusual observation by Mars Express shows a sweeping view over the planet’s south polar ice cap and across its ancient, cratered highlands.
The image was taken by the high-resolution stereo camera on ESA’s Mars Express on 25 February.
During normal scientific imaging, the camera typically takes images pointing straight down towards the surface, from around the closest point to the planet along the spacecraft’s elliptical orbit at an altitude of about 300 km.
But in this unusual observation, known as a ‘broom calibration’ image, Mars Express turned such that its camera panned over the surface far above the planet, close to its furthest point along its orbit, in this case at around 9900 km.
Importantly, as well as affording an unusual wide view, this allows the camera to record a range of features at the same illumination conditions, allowing essential calibration of the camera’s sensors.
Towards the bottom of the image is the south polar ice cap, comprising frozen water and carbon dioxide ice. This feature changes in size and shape with the seasons; the main image presented here was captured during the south polar summer, but during winter the ice extends into the smooth regions that can be seen surrounding it.
The mid-section of the image corresponds to the planet’s ancient southern highlands – it is covered by a high density of impact craters of varying size and states of erosion, with many craters overlapping.
Numerous patterns of dark, dusty dune deposits are also visible, swept up by wind and accumulating in impact craters and troughs.
Mars south pole and beyond, topography
Mars south pole and beyond, topography
Towards the top left of the image a portion of the giant Hellas basin can be seen. This feature spans more than 2200 km across and plunges some 8 km below the surface.
Two prominent channels – Dao Vallis and Niger Vallis – can be seen breaching the basin rim, made out as thin, dark wiggly lines in the colour image.
Hazy patches seen in the upper part of the image are attributed to clouds, while a thin, delicate layer of atmosphere follows the curvature of the planet at the horizont.
Source: ESA

Monday, 7 September 2015

Solar System Guide


Posted Today
The Universe is a very big place, and we occupy a very small corner of it. Known as the Solar System, our stomping grounds are not only a tiny fraction of the Universe as we know it, but is also a very small part of our galactic neighborhood (aka. the Milky Way Galaxy). When it comes right down to it, our world is just a dot in an endless cosmic sea.
The Solar System. Image Credit: NASA
The Solar System. Image Credit: NASA
Nevertheless, the Solar System is still a very big place, and one which is filled with its fair share of mysteries. And in truth, it was only within the relatively recent past that we began to understand its true extent. And when it comes to exploring it, we’ve really only begun to scratch the surface.
Discovery:
With very few exceptions, few people or civilizations before the era of modern astronomy recognized the Solar System for what it was. In fact, the vast majority of astronomical systems posited that the Earth was a stationary object and that all known celestial objects revolved around it. In addition, they viewed it as being fundamentally different from other stellar objects, which they held to be ethereal or divine in nature.
Although there were some Greek, Arab and Asian astronomers during Antiquity and the Medieval period who believed that the universe was heliocentric in nature (i.e. that the Earth and other bodies revolved around the Sun) it was not until Nicolaus Copernicus developed his mathematically predictive model of a heliocentric system in the 16th century that it began to become widespread.
Galileo (1564 – 1642) would often show people how to use his telescope to view the sky in Saint Mark’s square in Venice. Note the lack of adaptive optics. Credit: Public Domain
Galileo (1564 – 1642) would often show people how to use his telescope to view the sky in Saint Mark’s square in Venice. Note the lack of adaptive optics. Credit: Public Domain
During the 17th-century, scientists like Galileo Galilei, Johannes Kepler, and Isaac Newton developed an understanding of physics which led to the gradual acceptance that the Earth revolves round the Sun. The development of theories like gravity also led to the realization that the other planets are governed by the same physical laws as Earth.
The widespread use of the telescope also led to a revolution in astronomy. After Galileo discovered the moons of Jupiter in 1610, Christian Huygens would go on to discover that Saturn also had moons in 1655. In time, new planets would also be discovered (such as Uranus and Neptune), as well as comets (such as Halley’s Comet) and the Asteroids Belt.
By the 19th century, three observations made by three separate astronomers determined the true nature of the Solar System and its place the universe. The first was made in 1839 by German astronomer Friedrich Bessel, who successfully measured an apparent shift in the position of a star created by the Earth’s motion around the Sun (aka. stellar parallax). This not only confirmed the heliocentric model beyond a doubt, but revealed the vast distance between the Sun and the stars.
In 1859, Robert Bunsen and Gustav Kirchhoff (a German chemist and physicist) used the newly invented spectroscope to examined the spectral signature of the Sun. They discovered that it was composed of the same elements as existed on Earth, thus proving that Earth and the heavens were composed of the same elements.
With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.
With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.
Then, Father Angelo Secchi  – an Italian astronomer and director at the Pontifical Gregorian University – compared the spectral signature of the Sun with those of other stars, and found them to be virtually identical. This demonstrated conclusively that our Sun was composed of the same materials as every other star in the universe.
Further apparent discrepancies in the orbits of the outer planets led American astronomer Percival Lowell to conclude that yet another planet, which he referred to as “Planet X“, must lie beyond Neptune. After his death, his Lowell Observatory conducted a search that ultimately led to Clyde Tombaugh’s discovery of Pluto in 1930.
Also in 1992, astronomers David C. Jewitt of the University of Hawaii and Jane Luu of the MIT discovered the Trans-Neptunian Object (TNO) known as (15760) 1992 QB1. This would prove to be the first of a new population, known as the Kuiper Belt, which had already been predicted by astronomers to exist at the edge of the Solar System.
Further investigation of the Kuiper Belt by the turn of the century would lead to additional discoveries. The discovery of Eris and other “plutoids” by Mike Brown, Chad Trujillo, David Rabinowitz and other astronomers would lead to the Great Planet Debate – where IAU policy and the convention for designating planets would be contested.

Structure and Composition:
At the core of the Solar System lies the Sun (a G2 main-sequence star) which is then surrounded by four terrestrial planets (the Inner Planets), the main Asteroid Belt, four gas giants (the Outer Planets), a massive field of small bodies that extends from 30 AU to 50 AU from the Sun (the Kuiper Belt) and a spherical cloud of icy planetesimals that is believed to extend to a distance of 100,000 AU from the Sun (the Oort Cloud).
The Sun contains 99.86% of the system’s known mass, and it’s gravity dominates the entire system. Most large objects in orbit around the Sun lie near the plane of Earth’s orbit (the ecliptic) and most planets and bodies rotate around it in the same direction (counter-clockwise when viewed from above Earth’s north pole). The planets are very close to the ecliptic, whereas comets and Kuiper belt objects are frequently at greater angles to it.
It’s four largest orbiting bodies (the gas giants) account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%. The remaining objects of the Solar System (including the four terrestrial planets, the dwarf planets, moons, asteroids, and comets) together comprise less than 0.002% of the Solar System’s total mass.
The Sun and planets to scale. Credit: Illustration by Judy Schmidt, texture maps by Björn Jónsson
The Sun and planets to scale. Credit: Illustration by Judy Schmidt, texture maps by Björn Jónsson
Astronomers sometimes informally divide this structure into separate regions. First, there is the Inner Solar System, which includes the four terrestrial planets and the Asteroid Belt. Beyond this, there’s the outer Solar System that includes the four gas giant planets. Meanwhile, there’s the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune (i.e. Trans-Neptunian Objects).
Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites (or moons). In the case of the four giant planets, there are also planetary rings – thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.
The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium. The terrestrial planets of the Inner Solar System are composed primarily of silicate rock, iron and nickel. Beyond the Asteroid Belt, planets are composed mainly of gases (such as hydrogen, helium) and ices – like water, methane, ammonia, hydrogen sulfide and carbon dioxide.
Objects farther from the Sun are composed largely of materials with lower melting points. Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (hence why they are sometimes referred to as “ice giants”) and the numerous small objects that lie beyond Neptune’s orbit.

Together, gases and ices are referred to as volatiles. The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, which lies roughly 5 AU from the Sun. Within the Kuiper Belt and the Oort Cloud, objects and planetesimals are composed mainly of these materials and rock.
Formation and Evolution:
The Solar System formed 4.568 billion years ago from the gravitational collapse of a region within a large molecular cloud composed of hydrogen, helium, and small amounts of heavier elements fused by previous generations of stars. As the region that would become the Solar System (known as the pre-solar nebula) collapsed, conservation of angular momentum caused it to rotate faster.
The center, where most of the mass collected, became increasingly hotter than the surrounding disc. As the contracting nebula rotated faster, it began to flatten into a protoplanetary disc with a hot, dense protostar at the center. The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies.

Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.
In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the frost line).
The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium. Leftover debris that never became planets congregated in regions such as the asteroid belt, Kuiper belt, and Oort cloud.
Within 50 million years, the pressure and density of hydrogen in the center of the protostar became great enough for it to begin thermonuclear fusion. The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved.
At this point, the Sun became a main-sequence star. Solar wind from the Sun created the heliosphere and swept away the remaining gas and dust from the protoplanetary disc into interstellar space, ending the planetary formation process.
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The Solar System will remain roughly as we know it today until the hydrogen in the core of the Sun has been entirely converted to helium. This will occur roughly 5 billion years from now and mark the end of the Sun’s main-sequence life. At this time, the core of the Sun will collapse, and the energy output will be much greater than at present.
The outer layers of the Sun will expand to roughly 260 times its current diameter, and the Sun will become a red giant. The expanding Sun is expected to vaporize Mercury and Venus and render Earth uninhabitable as the habitable zone moves out to the orbit of Mars. Eventually, the core will be hot enough for helium fusion and the Sun will burn helium for a time, after which nuclear reactions in the core will start to dwindle.
At this point, the Sun’s outer layers will move away into space, leaving a white dwarf – an extraordinarily dense object that will have half the original mass of the Sun, but will be the size of Earth. The ejected outer layers will form what is known as a planetary nebula, returning some of the material that formed the Sun to the interstellar medium.
Inner Solar System:
In the inner Solar System, we find the “Inner Planets” – Mercury, Venus, Earth, and Mars – which are so named because they orbit closest to the Sun. In addition to their proximity, these planets have a number of key differences that set them apart from planets elsewhere in the Solar System.

For starters, the inner planets are rocky and terrestrial, composed mostly of silicates and metals, whereas the outer planets are gas giants. The inner planets are also much more closely spaced than their outer Solar System counterparts. In fact, the radius of the entire region is less than the distance between the orbits of Jupiter and Saturn.
Generally, inner planets are smaller and denser than their counterparts, and have few to no moons or rings circling them. The outer planets, meanwhile, often have dozens of satellites and rings composed of particles of ice and rock.
The terrestrial inner planets are composed largely of refractory minerals such as the silicates, which form their crusts and mantles, and metals such as iron and nickel which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather. All of them have impact craters and tectonic surface features as well, such as rift valleys and volcanoes.
Of the inner planets, Mercury is the closest to our Sun and the smallest of the terrestrial planets. Its magnetic field is only about 1% that of Earth’s, and it’s very thin atmosphere means that it is hot during the day (up to 430°C) and freezing at night (as low as -187 °C) because the atmosphere can neither keep heat in or out. It has no moons of its own and is comprised mostly of iron and nickel. Mercury is one of the densest planets in the Solar System.

Venus, which is about the same size as Earth, has a thick toxic atmosphere that traps heat, making it the hottest planet in the Solar System. This atmosphere is composed of 96% carbon dioxide, along with nitrogen and a few other gases. Dense clouds within Venus’ atmosphere are composed of sulphuric acid and other corrosive compounds, with very little water. Much of Venus’ surface is marked with volcanoes and deep canyons – the biggest of which is over 6400 km (4,000 mi) long.
Earth is the third inner planet and the one we know best. Of the four terrestrial planets, Earth is the largest, and the only one that currently has liquid water, which is necessary for life as we know it. Earth’s atmosphere protects the planet from dangerous radiation and helps keep valuable sunlight and warmth in, which is also essential for life to survive.
Like the other terrestrial planets, Earth has a rocky surface with mountains and canyons, and a heavy metal core. Earth’s atmosphere contains water vapor, which helps to moderate daily temperatures. Like Mercury, the Earth has an internal magnetic field. And our Moon, the only one we have, is comprised of a mixture of various rocks and minerals.
Mars, as it appears today, Credit: NASA
Mars, as it appears today, Credit: NASA
Mars is the fourth and final inner planet, and is also known as the “Red Planet” due to the oxidization of iron-rich materials that form the planet’s surface. Mars also has some of the most interesting terrain features of any of the terrestrial planets. These include the largest mountain in the Solar System (Olympus Mons) which rises some 21,229 m (69,649 ft) above the surface, and a giant canyon called Valles Marineris – which is 4000 km (2500 mi) long and reaches depths of up to 7 km (4 mi).
Much of Mars’ surface is very old and filled with craters, but there are geologically newer areas of the planet as well. At the Martian poles are polar ice caps that shrink in size during the Martian spring and summer. Mars is less dense than Earth and has a smaller magnetic field, which is indicative of a solid core, rather than a liquid one.
Mars’ thin atmosphere has led some astronomers to believe that the surface water that once existed there might have actually taken liquid form, but has since evaporated into space. The planet has two small moons called Phobos and Deimos.
Outer Solar System:
The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas that have rings and plenty of moons. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers that the solar system was bigger than previously thought.
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot – a raging storm that has happening for the past 400 years at least.
Saturn is best known for its prominent ring system – seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years).
Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. The only spacecraft to visit this planet was the Voyager 2 spacecraft in 1986.
Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. NASA’s Voyager 2 spacecraft also visited this planet and its system by 1989 during its transit of the outer Solar System.
How many moons are there in the Solar System? Image credit: NASA
How many moons are there in the Solar System? Image credit: NASA
Trans-Neptunian Region:
There have been more than a thousand objects discovered in the Kuiper Belt, and it’s theorized that there are as many as 100,000 objects larger than 100 km in diameter. Given to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine.
However, spectrographic studies conducted of the region since its discovery have generally indicated that its members are primarily composed of ices: a mixture of light hydrocarbons (such as methane), ammonia, and water ice – a composition they share with comets. Initial studies also confirmed a broad range of colors among KBOs, ranging from neutral grey to deep red.
This suggests that their surfaces are composed of a wide range of compounds, from dirty ices to hydrocarbons. In 1996, Robert H. Brown et al. obtained spectroscopic data on the KBO 1993 SC, revealing its surface composition to be markedly similar to that of Pluto (as well as Neptune’s moon Triton) in that it possessed large amounts of methane ice.

Water ice has been detected in several KBOs, including 1996 TO66, 38628 Huya and 20000 Varuna. In 2004, Mike Brown et al. determined the existence of crystalline water ice and ammonia hydrate on one of the largest known KBOs, 50000 Quaoar. Both of these substances would have been destroyed over the age of the Solar System, suggesting that Quaoar had been recently resurfaced, either by internal tectonic activity or by meteorite impacts.
Keeping Pluto company out in the Kuiper belt are many other objects worthy of mention. Quaoar, Makemake, Haumea, Orcus and Eris are all large icy bodies in the Belt and several of them even have moons of their own. These are all tremendously far away, and yet, very much within reach.
Oort Cloud and Farthest Regions:
The Oort Cloud is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun, though some estimates place the outer edge as far as 100,000 and 200,000 AU (1.58 and 3.16 ly). The Cloud is thought to be comprised of two regions – a spherical outer Oort Cloud of 20,000 – 50,000 AU (0.32 – 0.79 ly), and disc-shaped inner Oort (or Hills) Cloud of 2,000 – 20,000 AU (0.03 – 0.32 ly).
The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions that measure 20 kilometers (12 mi) in diameter. Its total mass is not known, but – assuming that Halley’s Comet is a typical representation of outer Oort Cloud objects – it has the combined mass of roughly 3×1025 kilograms (6.6×1025 pounds), or five Earths.
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
Based on the analyses of past comets, the vast majority of Oort Cloud objects are composed of icy volatiles – such as water, methane, ethane, carbon monoxide, hydrogen cyanide, and ammonia. The appearance of asteroids thought to be originating from the Oort Cloud has also prompted theoretical research that suggests that the population consists of 1-2% asteroids.
Earlier estimates placed its mass up to 380 Earth masses, but improved knowledge of the size distribution of long-period comets has led to lower estimates. The mass of the inner Oort Cloud, meanwhile, has yet to be characterized. The contents of both Kuiper Belt and the Oort Cloud are known as Trans-Neptunian Objects (TNOs), because the objects of both regions have orbits that that are further from the Sun than Neptune’s orbit.
Exploration:
Our knowledge of the Solar System also benefited immensely from the advent of robotic spacecraft, satellites, and robotic landers. Beginning in the mid-20th century, in what was known as “The Space Age“, manned and robotic spacecraft began exploring planets, asteroids and comets in the Inner and Outer Solar System.
All planets in the Solar System have now been visited to varying degrees by spacecraft launched from Earth. Through these unmanned missions, humans have been able to get close-up photographs of all the planets. In the case of landers and rovers, tests have been performed on the soils and atmospheres of some.
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A. Siddiqi
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A. Siddiqi
The first artificial object sent into space was the Soviet satellite Sputnik 1, which was launched in space in 1957, successfully orbited the Earth for months, and collected information on the density of the upper atmosphere and the ionosphere. The American probe Explorer 6, launched in 1959, was the first satellite to capture images of the Earth from space.
Robotic spacecraft conducting flybys also revealed considerable information about the planet’s atmospheres, geological and surface features. The first successful probe to fly by another planet was the Soviet Luna 1 probe, which sped past the Moon in 1959. The Mariner program resulted in multiple successful planetary flybys, consisting of the Mariner 2 mission past Venus in 1962, the Mariner 4 mission past Mars in 1965, and the Mariner 10 mission past Mercury in 1974.
By the 1970’s, probes were being dispatched to the outer planets as well, beginning with the Pioneer 10 mission which flew past Jupiter in 1973 and the Pioneer 11 visit to Saturn in 1979. The Voyager probes performed a grand tour of the outer planets following their launch in 1977, with both probes passing Jupiter in 1979 and Saturn in 1980-1981. Voyager 2 then went on to make close approaches to Uranus in 1986 and Neptune in 1989.

Launched on January 19th, 2006, the New Horizons probe is the first man-made spacecraft to explore the Kuiper Belt. This unmanned mission flew by Pluto in July 2015. Should it prove feasible, the mission will also be extended to observe a number of other Kuiper Belt Objects (KBOs) in the coming years.
Orbiters, rovers, and landers began being deployed to other planets in the Solar System by the 1960’s. The first was the Soviet Luna 10 satellite, which was sent into lunar orbit in 1966. This was followed in 1971 with the deployment of the Mariner 9 space probe, which orbited Mars, and the Soviet Venera 9 which orbited Venus in 1975.
The Galileo probe became the first artificial satellite to orbit an outer planet when it reached Jupiter in 1995, followed by the CassiniHuygens probe orbiting Saturn in 2004. Mercury and Vesta were explored by 2011 by the MESSENGER and Dawn probes, respectively, with Dawn establishing orbit around the asteroid/dwarf planet Ceres in 2015.
The first probe to land on another Solar System body was the Soviet Luna 2 probe, which impacted the Moon in 1959. Since then, probes have landed on or impacted on the surfaces of Venus in 1966 (Venera 3), Mars in 1971 (Mars 3 and Viking 1 in 1976), the asteroid 433 Eros in 2001 (NEAR Shoemaker), and Saturn’s moon Titan (Huygens) and the comet Tempel 1 (Deep Impact) in 2005.
Curiosity Rover self portrait mosaic, taken with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop in Feb. 2013. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer
Curiosity Rover self portrait mosaic, taken with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop in Feb. 2013. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer
To date, only two worlds in the Solar System, the Moon and Mars, have been visited by mobile rovers. The first robotic rover to land on another planet was the Soviet Lunokhod 1, which landed on the Moon in 1970. The first to visit another planet was Sojourner, which traveled 500 meters across the surface of Mars in 1997, followed by Spirit (2004), Opportunity (2004), and Curiosity (2012).
Manned missions into space began in earnest in the 1950’s, and was a major focal point for both the United States and Soviet Union during the “Space Race“. For the Soviets, this took the form of the Vostok program, which involved sending manned space capsules into orbit.
The first mission – Vostok 1 – took place on April 12th, 1961, and was piloted by Soviet cosmonaut Yuri Gagarin (the first human being to go into space). On June 6th, 1963, the Soviets also sent the first woman – Valentina Tereshvoka – into space as part of the Vostok 6 mission.
In the US, Project Mercury was initiated with the same goal of placing a crewed capsule into orbit. On May 5th, 1961, astronaut Alan Shepard went into space aboard the Freedom 7 mission and became the first American (and second human) to go into space.
After the Vostok and Mercury programs were completed, the focus of both nations and space programs shifted towards the development of two and three-person spacecraft, as well as the development of long-duration spaceflights and extra-vehicular activity (EVA).
Bootprint in the moon dust from Apollo 11. Credit: NASA
Bootprint in the moon dust from Apollo 11. Credit: NASA
This took the form of the Voshkod and Gemini programs in the Soviet Union and US, respectively. For the Soviets, this involved developing a two to three-person capsule, whereas the Gemini program focused on developing the support and expertise needed for an eventual manned mission to the Moon.
These latter efforts culminated on July 21st, 1969 with the Apollo 11 mission, when astronauts Neil Armstrong and Buzz Aldrin became the first men to walk on the Moon. As part of the Apollo program, five more Moon landings would take place through 1972, and the program itself resulted in many scientific packages being deployed on the Lunar surface, and samples of moon rocks being returned to Earth.
After the Moon Landing took place, the focus of the US and Soviet space programs then began to shift to the development of space stations and reusable spacecraft. For the Soviets, this resulted in the first crewed orbital space stations dedicated to scientific research and military reconnaissance – known as the Salyut and Almaz space stations.
The first orbital space station to host more than one crew was NASA’s Skylab, which successfully held three crews from 1973 to 1974. The first true human settlement in space was the Soviet space station Mir, which was continuously occupied for close to ten years, from 1989 to 1999. It was decommissioned in 2001, and its successor, the International Space Station, has maintained a continuous human presence in space since then.
Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA
Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA
The United States’ Space Shuttle, which debuted in 1981, became the only reusable spacecraft to successfully make multiple orbital flights. The five shuttles that were built (Atlantis, Endeavour, Discovery, ChallengerColumbia and Enterprise) flew a total of 121 missions before being decommissioned in 2011.
During their history of service, two of the craft were destroyed in accidents. These included the Space Shuttle Challenger – which exploded upon take-off on Jan. 28th, 1986 – and the Space Shuttle Columbia which disintegrated during re-entry on Feb. 1st, 2003.
In 2004, then-U.S. President George W. Bush announced the Vision for Space Exploration, which called for a replacement for the aging Shuttle, a return to the Moon and, ultimately, a manned mission to Mars. These goals have since been maintained by the Obama administration, and now include plans for an Asteroid Redirect mission, where a robotic craft will tow an asteroid closer to Earth so a manned mission can be mounted to it.
All the information gained from manned and robotic missions about the geological phenomena of other planets – such as mountains and craters – as well as their seasonal, meteorological phenomena (i.e. clouds, dust storms and ice caps) have led to the realization that other planets experience much the same phenomena as Earth. In addition, it has also helped scientists to learn much about the history of the Solar System and its formation.
As our exploration of the Inner and Outer Solar System has improved and expanded, our conventions for categorizing planets has also changed. Our current model of the Solar System includes eight planets (four terrestrial, four gas giants), four dwarf planets, and a growing number of Trans-Neptunian Objects that have yet to be designated. It also contains and is surrounded by countless asteroids and planetesimals.

Given its sheer size, composition and complexity, researching our Solar System in full detail would take an entire lifetime.
Source: Universe Today, written by Matt Williams